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Abstract 

All commonly used failure models, both univariate and multivariate, are indexed 

by a single scale, typically time. This thesis considers the case of indexing a 

failure model by two scales, namely time and usage. A family of models that is 

indexed by these two scales of measurement, and attempts to capture the 

dependence between them, is developed and an example given in detail. 

Extensions to this basic model, and problems associated with them, are explored. 

As an aside, an idealised stochastic process for modelling usage is introduced. 
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Failure models indexed by time and usage 

by Simon P. Wilson 

1 Introduction 

A glance at any book or journal in the field of reliability and survival analysis 

will show that much time and effort has been devoted to probabilistic models for 

failure of an item or system of items. One can choose to model the time to 

failure of an object from a wide variety of univariate probability distributions 

such as the exponential, Weibull or gamma. The times to failure of a system of 

units can be modelled by one of many multivariate distributions; see Hougaard 

(1987) for a review of some of the more commonly used. All these distributions 

have a feature in common, namely that they are indexed on a single variable or 

scale of measurement. Often this variable is time but may be number of cycles, 

amount of exposure to a hazardous material; any variable that the modeller 

thinks relevant in fact. 

Whilst these models are widely used and are very versatile, there are certain 

situations where one would like failure of an item to be indexed by more than 

one variable.  In this case the existing models are not satisfactory.  A classic 

example is in the area of automobile warranties, where a manufacturer will agree 

to repair or replace a vehicle if it fails within, say, 3 years or 30,000 miles from 

production.  If a manufacturer wishes  to investigate the expected number of 

warranty claims or tries to find a warranty that maximises his profit margin, 

then it is necessary to have a failure model for automobiles that is in terms of 

time  to failure  and number of miles  to failure.  Another example would be 

measuring the number of deaths amongst mineworkers in terms of age at death 

and  amount  of exposure  to  hazardous  dust  whilst   at  work.   In  both  these 

examples the two scales of measurement  are obviously dependent  -  what is 

needed is a failure model indexed jointly by the two scales. In this thesis we 

assume these two scales are time and usage, but this work could equally be 

applied to time and some other index like exposure to hazardous dust. 



To the best of my knowledge almost no work has been published that looks at 

this situation. That failure can be represented by more than one scale of 

measurement has been recognised, see Farewell and Cox (1979) or Oakes (1988). 

In these papers the authors consider the problem of reducing several scales of 

measurement down to one that is most informative in some sense, with the 

starting scales becoming time-dependent covariates. 

The innovative nature of the idea here must be emphasised; this topic has 

received almost no attention in the literature despite the fact that such models 

axise naturally in many situations of interest. A naive solution to the problem of 

having a suitable model would be to select one of the available bivariate failure 

models and then attempt to justify its use as a time/use failure model in some 

manner. However, this is not the approach taken in this thesis; instead, 

assumptions are made concerning the dependence between the two scales of 

measurement and a model is derived from those assumptions. It is hoped that 

the result is a model with more justification than one developed from the former 

approach, which would employ a model that was really designed to describe the 

joint failure of two units in terms of one scale rather than the failure of one unit 

in terms of two scales. 

This thesis is split into 5 further sections. Section 2 introduces a family of models 

indexed by time and usage then section 3 considers an example of this model in 

some detail. Section 4 considers generalisations of the model and some problems 

that may be encountered with them, whilst section 5 looks at a more realistic 

stochastic process to model usage. Section 6 concludes the thesis and outlines 

possible areas for future research in this topic. 



2 A bivariate failure model indexed by time and usage. 

The aim of this section is to introduce a generic bivariate model for failure in 

terms of both time and usage. 

Consider some unit or object like a car, a light bulb or any item which can 

accumulate use; in the case of an automobile this use will be mileage, in the case 

of a light bulb it may be number of times switched on or the amount of time 

that it is lit. To begin with, we observe that this unit may age over time, even 

though it is not used, due to rusting, humidity, adverse temperature and other 

environmental effects. These effects are dynamic, that is change over time. 

Singpurwalla and Youngren (1990) have shown that if u(t) denotes the failure 

rate of the unit under ideal (or laboratory) storage conditions, and if the 

dynamics of the storage environment are described by a stochastic process known 

as a "gamma process" with parameters a(t) and b, then the failure rate of the 

unit under storage is 

(2.1) r(t) = a(t)   In ( 1 + ^ ) 

If a(t) = a and w(t) = w then r(t) is a constant and so ageing under storage 

would be that provided by an exponential distribution. Similar results are 

obtained when the gamma process is replaced by a "shot-noise process". 

From (2.1) we have a failure rate for the unit when it is not used. Of course one 

can choose any failure rate under non-use that one likes; the point of (2.1) is to 

demonstrate that models have been developed in the literature to meet this 

requirement. Now let us put the unit to use, and denote the amount of usage at 

time t as M(t). We use the notion of proportional hazard (Cox (1972)) and 

suppose that the effect of usage is to increase the conditional failure rate 

r(t|M(t)) of the unit from r(t) to say r(t) + /?M(t), where ß > 0 is a constant; 

other forms are possible. We are uncertain about the usage at time t and so M(t) 

is assumed to be some positive and non-decreasing stochastic process, in 

particular a Poisson process with intensity function A(t). Intuitively A(t) 

measures the rate of use of the item over time, and figure 1 gives three possible 



functions that are candidates for A(t): respectively a constant rate of use, cyclical 

use and a rate of use that decreases as the unit becomes old. Observe that this 

makes M(t) a discrete quantity taking values in the non-negative integers, 

although one is at liberty to consider other, possibly real-valued, non-decreasing 

stochastic processes to model M(t). 

Figure 1 Three candidate functions for A(t) 

With these assumptions we have tried to model the physics of the relationship 

between time and usage to failure in a simple but intuitive way. In any event, we 

axe now able to derive a bivariate density for failure of the unit in terms of time 

and use based on these assumptions. The derivation is quite straightforward, and 

will only be outlined below; readers interested in the full technical details of the 

derivation axe referred to the appendix. 



Let T denote time to failure and U usage to failure. The first step is to reason as 

follows 

(2.2)     fT TJ(t, u)   =   density of failure at time t and use u 
=   density of failure at time t and with use at time t of u 

=  fT)M(t)(t, u) 

= {T\U(t)^ u> fM(t)<u) 

_   f ft| u)   (AW)!  e-A(t) 
" fT|M(t)^' u)      u! 

where A(t) = J A(s) ds,  since M(t) is a Poisson process. 
0 

Using the well known identity connecting any continuous probability density f(t) 

with its failure rate h(t) 

t 
f(t) = h(t)exp(-| h(s)ds) 

0 

we can say 
t 

(2.3)     fTlMm(t| M(t)=u)   =   (r(t)+/Ju) x exp (-J(r(s)+/JM(s)) ds | M(t)=u ) xT|M(t) 
0 

where Jf(s) ds | f(t)=u denotes the integral of f(s) given that f(t)=u. 

By using this expression, we can follow the method outlined by Lemoine and 

Wenocur (1986) and arrive at 

(9 A) f (t, u) _   (r(t) + ßn) e R^)  ( | ^^(t-s)   ds  x « 
(2.4) fT|M(t)(t| Uj _ ( A(t) )u Kl 

where R(t) = J r(s) ds, the cumulative hazard. 
0 



Now incorporate (2.4) into (2.2) to obtain 

(2.5) fT?U(t,u)   = 
(r(t) + .u) e^*)   e-AW  ,   \   ^ ^(t-s) (   {   Ms) 

0 

ds   )U 

where t >0, u = 0, 1, 2, ... 

It must be emphasised that this is not a bivariate density for failure in the usual 

sense of modelling the joint failure of two items, but rather describes the failure 

of a single item in terms of time and use. There is flexibility in this model, as 

one is at liberty to assign any intensity of use function A(t) and failure rate for 

storage r(t) that seems plausible, and indeed to alter the relationship r(t)+/?M(t) 

between them. Note that the integral appearing in (2.5) is the convolution of A(s) 

with e^s, so can be found via Laplace transforms if direct integration proves 

troublesome. 

The above density enjoys some analytic tractability, even in the most general 

case. For instance, the marginal of T is 

t 

(2.6)    fT(t)   =  (r(t)+/3 

t>0. 

A(s)e^t-s)dS)xexp{-R(t)-JA(s)(l- 
0 

,-/?(t-s) )ds} 

This gives a marginal survival of 

(2.7) F(t) = P(T>t) = exp { -R(t) - 1 A(s) (l - e"^-8) ) ds }       t > 0 

It is then an easy matter to find the marginal failure rate as 

(2.8) rT(t)   = 
*r(t) 
F(t) 

fa 

r(t) + /?j A(s) -/?(t-s) ds t>0 

Equations (2.6), (2.7) and (2.8) defines a probability for time to failure that 

considers both environmental and usage stresses on a unit, and as such is of 

merit by itself as a univariate model. 



Given (2.5) and (2.6) we have the conditional density of usage to failure given 

time to failure as 

r(t) + ßu        (f?(t))U    -r?(t) n   ,   0 (2.9)    P(U=u | T=t)   =  r(ty+^t) x 4^ e u = 0, 1, 2, ... 

where r,(t) = jA(s) e"^(t*s) ds 
0 

Note that this is a different density from M(t), usage at time t, unless ß=0. 

Whereas the expected value of M(t) is A(t), the expected value of U given T=t 

can be shown to be 

(2.10) E(U | T=t ) = „(t) x ( 1 + f(t) Zm  ) ■ 

which is seen to be equal to A(t) if and only if ß=0. In general, the marginal of U 

is difficult to calculate, although as we see in Section 3 it can often be obtained 

in special cases. 

Uncertainty about the parameter ß might be described by placing a prior 

distribution on it. Uncertainty about the functions r(t) and A(t) could be 

described by making them stochastic processes; thus M(t) would become a 

doubly stochastic or conditional Poisson process. Section 3 looks at these ideas 

for a particular example of the model. 



3 Example 

In this example we consider the simple situation of the failure of an electrical 

switch in terms of T, the time to failure and U, the number of times the switch 

is used. We assume that under storage conditions the switch ages according to an 

exponential distribution with rate a (r(t) = a in the notation of section 2). Each 

time the switch is used this failure rate is incremented by an amount ß because 

of the extra stress induced upon it (so r(t| M(t)) = a+/?M(t) in the notation of 

section 2). Finally, we assume that use of the switch occurs as a homogeneous 

Poisson process (that is to say the time between uses of the switch are 

independent and identically distributed exponential random variables) with rate 

A. Under these assumptions we may apply our model (2.5) and obtain the density 

for failure at time t and number of uses u as 

(3.1)fTjU(t,U) = (^U)
uf

+A)t(^(l-e^))U;    t>0,u = 0,l,2,... 

The density is continuous in t but only defined for u an integer, so consists of a 

sequence of univariate functions, continuous in t, equally spaced along the U-axis 

at u=0 1, 2, ... . The plots of such a density will be referred to as bivariate 

density sheets. 

The formulae given by (2.6) to (2.10) can be applied by letting r(t) = a and A(t) 

= A; for example the marginal survival to time t, and marginal failure rate, of 

the switch are 

(3.2) 

FT(t) =   exp { -{a + A)t + |(1 - e-^)} 

rT(t) = a + A (1 - e"^) , t>0 

In this special case we can exploit the homogeneity of the Poisson process to 

obtain the marginal for use to failure: 

(a + du) AU n   1    o 
(3.3) P(U = u) =      u

{       P }  u = 0, 1, 2, ... 
l[  (A + a + ß\) 
i=0 

8 



We also have an expression for the distribution function: 

^        u  An(o+jto) J   n w nv (1 - exp{-(A+tt+/?i)t» \ 
(3.4)   P(T < t, U < u) = }2 -  flnni     1 .2-, ^  V i J A+a+/3i J 
v n=0    p ^i=0 

Figure 2 is a plot of the density (3.1) when «=0.2, /?=0.2 and A=1.5. 

The marginal moments for T and U can also be written down in this case, 

although only rather messily in terms of the incomplete gamma function 7(a, n). 

Let x = X/ß and y = a/ß. Then 

(3.4) E(T) = 2P£)  x-(x+y)   x 7(x+y, x) 

and 

(3.5) E(U) = exp(x) x^X+y) x ( 7(2+x+y, x) - (l+2x+y) 7(l+x+y, x) + 

x(l+x+y) 7(x+y, x) ) . 

Now we consider the placing of priors on the parameters (a, ß, A) of (3.1), and 

address the question of using data to update our prior distributions. The first 

observation is that if a and ß are independent of A then the gamma distribution 

conjugate prior for A. This is easy to see from (3.1) by noting that is a 

L(A | t, u) = f(t, u | A) 

oc Au e"tA 

Suppose A has a gamma distribution with shape ^ and scale *r Given n 

(independent) observed time-use failure pairs (4, u^, ..., (tn, un) we have a 

posterior for A : 

(3 ,5)   ,(A I (tlf ux), ..., (tn, un))  « *(A)xL(A I (tlt uL), ..., (tn> un)) 



so that the posterior of A is gamma with shape 1^+E^ and scale flj+Etj- 

The likelihoods for a and ß do not appear to possess a recognisable conjugate 

prior. However, in the case of a a posterior can still be written down in closed 

form, albeit an increasingly complex one as we increase the amount of data, if we 

assume a gamma prior on a. Assume a is independent A. The likelihood of a can 

be written : 

L(a | 0, t, u)  «  (a+ßu) eat 

Assume that the prior on a is a gamma with shape v2 and scale ^. Then the 

posterior of a is of the form 

(3.6) *(« | Mt^u^-.^Win))    «    ^a)xL{a\ß,{ivMl),...^n^n)) 

K    c-C2+£ti).x   /2-1ft(a+/?u.) 
i=l 

The normalising constant here will be 

(3.7) |e-(ö2+Eti)ax   /2-1ft(a+/?u.)  da 

Expanding the product, we see that the integrand is a finite sum of powers of a 

multiplied by expH^+E^a}, so (3.7), the normalising constant for the 

posterior of a given by (3.6), is just a finite sum of gamma functions. Thus we 

can give the exact posterior of a. This posterior is dependent upon ß, so even if 

we assume a and ß to be a priori independent, they are dependent in the 

posterior. 

Similar calculations for ß are less straightforward, due to the more complex 

nature of the likelihood. There is no closed form posterior for ß for any of the 

commonly used priors, and it appears that one would have to employ simulation 

or some other approximation to obtain a posterior. If ß were known or assumed 

10 



as some value, then (3.5) and (3.6) show that one could proceed to calculate 

exact posteriors for a and A given that they had independent gamma pnors. The 

independence of a and X would remain, so these calculations could be done 

separately. If some prior was placed on 0, then we would need to calculate a 

joint posterior for a and ß because of the dependence that is introduced between 

them. 

Figure 2 Bivariate density sheets for (3.1) 

11 



4 Using other stochastic processes to model usage 

There are several ways by which the model outlined in Section 2 can be 

generalised. One that comes straight to mind is to model cumulative usage as 

some stochastic process other than Poisson, perhaps some process taking values 

in [0,oo) instead of the non-negative integers. There axe numerous stochastic 

processes that one could look at, and intuitively any process M(t) that satisfies 

i)  M(0) = 0 

ii)  M(t) >0     Vt 

iii)   M(t) is non-decreasing 

is a possible candidate to model usage. 

Given that we decide on some process M(t), then from (2.2) and (2.3) we see 

that to obtain a density for failure in time and usage requires us to know two 

things about M(t) 

a) The density of M(t) and 

/        t N 
b) an evaluation of exp ( -/? J M(s) ds | M(t)=u ) \     0 

Recall that we assume the failure rate of a unit when it is not used is r(t). The 

effect of usage m is to increase the failure rate to r(t)+/?m, where ß is a constant. 

In other words : 

r(t I m) = r(t)+/?m 

Since usage is assumed to be a stochastic process M(t), we rewrite the 

conditional failure rate as: 

r(t| M(t)) = r(t)+/?M(t) 

What we desire is the density of failure at time t and usage u. Let T be the 

12 



random variable denoting time to failure, and let  U be the random variable 

denoting usage to failure. As in section 2, we reason as follows: 

(4.1) f(t, u) = density of failure at time t and usage u 

= density of failure at time t and with usage at time t of u 

= f(t, M(t)=u) 

= f(M(t)) x f(t |M(t)) 

Using our conditional failure rate r(t| M(t)) we can say 

■; 

(4.2) f(t| M(t)=u) = (r(t)+/3u) x exp ( -| r(t)+/?M(s) ds | M(t)=u ) 

0 t 
= (r(t)+/?u) e"R(t) x exp (- /? j M(s) ds | M(t)=u ) 

t o 
where R(t) =    r(s) ds 

0 

Combining equations (4.1) and (4.2) we see that the required joint density is of 

the form 
t 

(4.3) f(t, u) = f(M(t)=u) x (r(t)+/?u) e'R(t) exp (-/? J M(s) ds | M(t)=u ) . 
0 

(4.3) provides a most general expression for a class of densities indexed by time 

and usage. By making M(t) a Poisson process, we obtain the model of section 2. 

What about M(t) as another stochastic process? I have studied, as a first 

example, the case of modelling M(t) as a homogeneous compound Poisson 

process. This can be described as a homogeneous Poisson process where the jump 

at each event is no longer 1, but some random variable. I considered the case 

where the jump sizes are independent and identically distributed exponential 

random variables. In other words, if N(t) denotes the number of events at time t 

(which is a homogeneous Poisson process) and \J{ are iid exponential then 

f 0, if N(t)=0 
(4.4) M(t) = { N(t) 

£ Up    if N(t) > 1 
i=l 

13 



This process satisfies the three criteria i), ii) and iii). A typical realisation of this 

process is given by figure 3. M(t) can now take any non-negative value. To give 

this model some practical explanation, imagine that M(t) is the number of miles 

Figure 3 Typical realisation of a compound Poisson process M(t) 

an automobile has driven. Under this model we are then assuming that the car is 

used according to a homogeneous Poisson process, and that each time it is used 

the number of miles driven is an exponential random variable. Amongst other 

things, this means that we assume each time between uses of the vehicle is 

independent. Since this process is a 'jump' process, we are also tacitly assuming 

that these miles are accumulated instantly, whereas of course in reality they are 

accumulated over some period of time. If we assume, as we did in the example of 

Section 3, that the conditional failure rate is a + /?M(t), then we are ready to 

derive the joint density via the same method employed in Section 2. M(t) is 

compound Poisson; let the usage events occur as a Poisson process with rate A 

14 



and let each jump in the process be exponential with mean 1. The density of 

M(t) can be computed; it is continuous on (0,oo) and has positive probability 

mass at 0, since there is always a positive probability that N(t)=0. 

The density of M(t) is given by: 

(4.5)    P(M(t) = 0) = e-At      ;     fM(t)(u) = e-^EVp)r U>0 

It remains to calculate fT)M(t)(t| u). Observe from (2.3) that this is 

t 

(4-6)    fT|M(t)(fcl u)  =  (a+/?u) e"at X GXP (" ß\ M(S) dS ' M(t)=U ^ 

To find /Q* M(S) ds, the area under M(s) between 0 and t, given that M(t)=u 

was quite straightforward in section 2 when M(s) was Poisson but is now much 

more difficult. I have been unable to obtain a closed form for (4.3) when M(t) is 

compound Poisson, but by conditioning on N(t) and combining with (4.5) I can 

say that for t > 0 and u>0 there is a joint continuous density of the form 

(4.7)      fT u(t,u) = (« + ßu) e<a+X^ e- e^   x  £  A*  In(t, u; 0) 
Liv n=l 

where In(t, u; ß) is a 2n-dimensional integral given by 

In(t, u; ß) =  f     exp { ß £ Sj u- } d(s, u) 
JiZn i=l 

and fin = {(s,u)GR2nl  u->0  ;   E ^ = u ;  0 <sx < ... < sn < t } 
L i=l 

As with (2.5), the details of the derivation of (4.7) are rather cumbersome but 

present few difficulties and have been relegated to the appendix. This integral 

has finite value, and of course can be evaluated numerically. It is possible to 

analytically integrate out (s^...^), leaving an n-dimensional integral over 

(u Un) to calculate numerically. We are integrating over the simplex E^=u, 

and so can reduce this integral to an (n-l)-dimensional problem. This is still a 

rather forbidding task for even moderate values of n, and to become practicable 

further simplification of (4.4) will be necessary. 

15 



As there is positive probability mass at M(t)=0, so there is mass at U=0 (that is, 

along the T-axis) in the joint density. We can show that 

(4.8) P(U=0)=^    • 

It is distributed along this axis with mass function 

fT)U(t, 0) = « e-^ t>0 

Although the joint density appears to be beyond a closed form representation, by 

following the method of Lemoine and Wenocur (1986) one can obtain the 

marginal survival for time to failure as : 

A 

(4.9) P(T>t) = {l+ßt)ß e'(a+A)t t>0 

The marginal failure rate is 

(4.10) rT(t) = « + AT|^   • t>0 

We notice a similarity between (4.10) and the marginal failure rate of the model 

example in section 3, given by (3.2). Recall that the model there simply assumed 

M(t) as a homogeneous Poisson process with intensity A. In both cases we have : 

rT(0) = a   ; Hm   rT(t) = a+A   ;       rT(t) is strictly increasing. 

The density specified in (4.7) is more easily approximated via simulation. The 

integral in (4.6) can be easily simulated by computer and this enables us to 

approximate a density value for any given t and u. If no further simplification of 

(4.7) is possible, then numerical simulation is the easier and quicker option over 

numerical integration. Details of a simulation plan are to be found in the 

appendix. Figure 4 overpage is a plot of the simulated joint density for 

a=/?=A=l. 

16 



In conclusion of this section, it is clear that modelling usage by a real-valued 

stochastic process, instead of a Poisson process, may make matters more realistic 

but does increase the complexity of the resulting density. The situation examined 

in this section is a good example of what can happen; the compound Poisson 

process is one of the more analytically tractable real-valued stochastic processes 

yet it is still difficult to define the associated joint density of failure. 

O 

in 

6 #A/V Y\/\V\V\\V\ (CL /"S/ \/\ A 

-7-^ A A *v X x 

vVXVvV   ' 

Figure 4 Simulated joint density for (4.7) 
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5 The usage process 

As an aside to the probability model proposed in this thesis, an idealised 

stochastic process for modelling usage of an automobile, computer or any device 

where usage is a real-valued quantity is introduced. This process will be called 

the usage process. The usage process is a function of three sets of non-negative 

valued random variables : 

i) X1? X2, Xg, ... define the length of consecutive periods of rest and 

ii) Y,, Y2, Y3, ... define the length of consecutive periods of use and 

iii) G , G2, G3, ...   define the rate of use during each period of use Yv Y2 etc. 

The process starts with rest period Xr At the end of this period the first usage 

period Y, starts, with usage accumulating at the random rate Gr When Yl 

finishes, X2 begins and so on, with each rest period X- followed by a use period 

Y. During the ith usage period, amount of use increases at a rate Gj. During rest 

periods the amount of usage stays constant. The amount of use in the i-th use 

period will be Y^. Figure 5 shows a typical realisation of the usage process. 

Let M(t) denote the amount of use at time t. First of all, if we suppose that at 

time t we are in the (n+l)th rest period, then usage to time t is given by 

(5.1) M(t) = ± YjGi  . 
i=l 

Now suppose at time t we are in the (n-fl)th use period, which started at time 

T     ,   Then the usage to time t is given by the following equation : 
n-1-r 

(5.2) M(t) = ± Yfi{ +  (t - Tn+1)Gn+1 

i=l 

where T^ = X-^ 

Ti = \l + Yi-1 + Xi i=2' 3' - 

18 



We can combine (5.1) and (5.2) into one expression by 

(5.3) 
oo 

M(t)= Emin^Yi' Mt-TiMt-TjHGi 
i=l 

where T- are defined as in (5.2) 

,  , , ,      r   l,ifx>0 
and h(x) = { 0? otherwise 

Figure 5 Typical realisation of the usage process M(t). 

In practice, one could allow one or more of the three sets of random variables to 

be deterministic if the situation required it; i.e if M(t) measured the length of 

time a light bulb is switched on up to time t then G-l Vi would be sensible. If 

the Xj are independent and identically distributed, and the Y- are too, then the 

sequence (Xp Yp X2, Y2, ...) is an alternating renewal process. 
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6 Conclusion 

This thesis is an initial attempt at addressing some of the requirements for 

models indexed by time and usage. The approach has been to make assumptions 

about the relationship between the two scales of measurement and to develop a 

probability model from those assumptions. In section 2, as well as obtaining a 

class of joint densities, a class of marginal densities for time to failure was 

obtained that may be considered a viable univariate model for failure in its own 

right. By allowing specification of a rate of use function A(t) and a hazard 

function r(t) to describe environmental effects, the model offers great flexibility. 

The discrete nature of the usage variable U is not, I believe, a cause for concern 

since one is at liberty to make the unit of use relatively small (so for example in 

the case of automobile mileage, setting U to be the number of miles driven). 

Section 4 considered the replacement of the Poisson process to model usage by 

some other stochastic process, and gave an example which showed that one can 

expect greater problems in deriving the model. Generally, my attempts to make 

usage a continuous quantity have met with only partial success so far. 

Section 5 considered a more realistic stochastic process to model usage than is 

used in the rest of the thesis, named the usage process. Ideally one would like to 

obtain a model of the form proposed here that used this process for M(t), but 

there remains a great deal of investigation to be done before that can be 

achieved. It is quite possible that analytic results will be unobtainable, although 

one should be able to simulate the process if this is the case. It is my intention to 

continue research on this particular topic. 

In summary, then, this is a new area of research and there are many avenues of 

thought still to be explored. There are entirely different methods of creating 

models indexed by two variables that need to be investigated, and the method 

used here needs to be extended to other usage processes, perhaps to other forms 

for the conditional failure rate and even to looking at models indexed by three or 

more dependent variables. In the immediate future, my research in this area will 

concentrate on the usage process and on trying to develop a model around it. 
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Appendix 

Deriving a failure model indexed by time and usage 

This appendix shows how the failure model indexed by time and usage may be 

derived. It will consider the specific cases that were introduced in sections 2 and 

4. 

Recall from equation 4.3 that we have a general expression for the density of 

failure at time t and usage u, when the conditional failure rate is r(t)+/?M(t) and 

M(t) is a stochastic process describing usage. 

t 

(Al)    f(t, u) = f(M(t)=u) x (r(t)+/?u) e-R(t} exp (-/? j M(s) ds | M(t)=u ) . 
0 

In the following two sections we will show the derivation of (Al) when M(t) is a 

Poisson process (as in section 2) and a compound homogeneous Poisson process 

(as in section 4). 

The Poisson process 

Let M(t) be a Poisson process with intensity function A(t). Its density is Poisson 

with mean A(t). What about the integral that equation (Al) says we must 

specify to find the density? Let Si denote the time of the i-th event in the 

process. If M(t)=u then the area under the process from 0 to t is : 

t u 
( (M(S) ds | M(t)=u )   =  tu - ^Sj 

o i=1 

Conditional on M(t)=u then, as an unordered set, standard Poisson process 

theory tells us that the Sj's are distributed as a random variable S which has 

density A(s)/A(t) on [0, t), and is 0 otherwise. So 

(A2)     exp (-/? f M(s) ds | M(t)=u) =  E ( exp (-/?(tu-£Sj)) |   M(t)=u) 

0 
i=0 

=  E ( exp (-/J(tu-Su)) | M(t)=u) 
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=   {E(exp(-/3(t-S))|M(t)=u)}U 

f t 1 
1 

=     | exp(-/?(t-s)) . A(s)/A(t) ds  j 

Substitute this expression into (Al) to obtain equation (2.4) as required. 

Compound Poisson Process 

In section 4 we attempted to generalise the model of section 2. To simplify 

matters a little, we assumed that r(t), the non-use failure rate, was a constant a. 

Let M(t) be a homogeneous compound Poisson process with intensity A, and let 

each jump in the process be an independent and identically distributed 

exponential random variable with mean 1. Let N(t) be the number of events to 

time t (so that N(t) is Poisson with mean At). Then M(t) can be defined as 

f 0, if N(t)=0 
N(t) 

M(t) =     I   £ Uj , if N(t) > 1 

where the U- are iid exponential random variables with mean 1. 

The density for M(t) can be calculated by conditioning on N(t); if N(t)=n then 

M(t) is the sum of n iid exponentials with mean 1, so has a gamma distribution 

with shape n and scale 1. M(t) can take any value in [0, oo). First note that 

P(M(t)=0) = P(N(t)=0) = e"At 

so that there is mass at M(t)=0. For M(t)=u>0 there is a continuous density 

function 

oo 
(A3) f(M(t)=u) = £ f(M(t)=u | N(t)=n) P(N(t)=n) 

n=l 
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~ ^    (n-1)!   '    n! 

_ 1-At f*  ^^(Atf 
"e ^   (n-l)!n!   ' 

n=l 

So for this particular compound Poisson process we have a density function. 

As well as the density of M(t), we must specify an exponent of the integral of 

M(t). This was easy when M(t) was a Poisson process, but now this is more 

difficult. Let Sj be the epoch of the i-th event, and let \J{ be the amount of usage 

at the i-th event. By observation of figure 3, one can see that the area under the 

process, conditional on N(t)=n, is 

t n 
(A4) ( f M(s) ds | M(t)=u, N(t)=n) =   £ (t-ty V- 

o i=1 

In the Poisson process case M(t)=N(t) but here that is not so. If M(t)=0 then 

obviously /M(s) ds=0 so that f(t| M(t)=0) becomes aeat. For M(t)=u>0 

t f    N(t) 
(A5)      exp l-ß f M(s) ds | M(t)=u} = E (exp { -/?£ (t - S{) \J{ } | M(t)=u} 

i i=l 
Condition on N(t) and average with respect to the distribution of N(t) given 

M(t) 

= £ E ( exp{ -/?£(t - S{) U;} | M(t)=u, N(t)=n) x P(N(t)=n | M(t)=u) . 

n=l i=l 

Conditional on N(t)=n, then M(t) = £ Uj = u, so we can say: 
i=l 

= £ E ( exp{- /Jt^Ui + ßtsp.} | M(t)=u, N(t)=n) x P(N(t)=n | M(t)=u) 

n=l i=l i=1 

= £  E ( exp { -/Jtu + ßESPi } I M(t)=u, N(t)=n ) x P(N(t)=n | M(t)=u) 

n=l i=l 

= e^tu £ E ( exp { /J^S^ } | M(t)=u, N(t)=n ) x P(N(t)=n | M(t)=u) 
n=l i=l 

 Equation (A6) 
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What is P(N(t)=n| M(t)=u), that appears in (A6)? If u=0 then N(t)=0 with 

probability 1, so P(N(t)=0 | M(t)=0) = 1. 

If u>0 then we have the following : 

P(N(t)=n) P(M(t)=u | N(t)=n) 
(A7) P(N(t)=n| M(t)=u)   =       l   l P(M(t)=u)  

(At)np-At    a11'1 e-u 

~ETe      '    (n-1)! 

h ^1)! i! 

(n-1)! n! 

Ä u1'1 (At)1 
n=l, 2, 3, .. 

■   1   (i-1)! ü i=l 

It can be shown, in a similar fashion to (A7), that conditional on M(t)=u>0 and 

N(t)=n the joint density of (Uj, ..., Un) is 

(A8)       f(ul5 ..., un | M(t)=u, N(t)=n)    =   ^   ;     for ^ > 0, jSj = u 

and that the joint density of (S1, ..., Sn) is 

(A9)       f(Sl, ..., sn | M(t)=u, N(t)=n)  =  ^   ;   for 0 <s: <s2 < ... <sn<t 

and  that  the  two  sets  of random  variables   (Ulv..,Un)  and   (Slv..,Sn)  are 

independent. Use (A7), (A8) and (A9) in equation (A6) to say 

t 
exp{-/?JM(s)ds |M(t)=u} 

0 
un^(At)n 

=    e ,^tuf     M[i   f    i^lexp^Es^d^u) 
'       nti oc u^At)1   K u^t* i=l * lJ 

Si wi! 
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(Aio)        = -4l7-u x £ A" In exp { ^1 ^} d(s' "} 
g u    (At)        n=l       J"n 1=1 

i^lO-l)!i! 

where fin = {(s^ ..., sn> u^ ..., un) G R2n| uj > 0, .|ufn, 0 < §1 < ... < sn < t} 

Use (AIO) and (A3) in (Al) to give the joint density expression of (4.4) that we 

require. 

Simulation 

Numerical integration of (A10) is a forbidding task. Simulation provides a 

quicker method of approximating (A10), via equations (A5), (A7), (A8) and 

(A9). A simulation strategy to calculate the density at one point (t, u) is 

outlined below. Assume a, ß and A known. 

Before the strategy is given, there is one observation to make. The distribution of 

(Ulv..,Un) given M(t) and N(t), (A7), is that of the order statistics of (n-1) 

independent uniform random variables on [0,u]. It is easy to show that if we take 

the order statistics of (n-1) samples from a uniform distribution on [0,u], then the 

distance between each consecutive order statistic gives a sample u1,...,un. 

Select (t, u), where u>0 (we know the joint distribution for u=0). The 

expectation (A5), which forms part of the joint density, is estimated by the 

mean of a sample of size K, where K is some suitably large number. 

Repeat  : k=l 
- using (A7), sample from the distribution of N(t) | M(t)=u to find a value n*. 

- using (A8), sample from (Up ...,Un*) I M(t)=u, N(t)=n*. Generate n*-l 

samples  from  a uniform  on   [0,  u],  say   (v^...^^).   Order  them,  so  that 

v(l)<V(2)<-<V(n*-l)- N0W U1=V(1)' U2=V(2)-V(1)' -' V=U-V(n*-l)is the 

required sample. 
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-   US1 ng (A9), sample from (Slv..,Sn*) | M(t)=u, N(t)=n*. Generate n   uniform 

samples on [0,t]. The ordered sample is s1? ..., s^*. 

n 
-ek=   exV{ßf^s-u.y 

i=l 

- k=k+l. Until k=K 

Using (A3) in (Al) we can write the joint density of T and U as 

1 t 

f(t, u) =  e"'X   £  (XU1)~!  X(Q+/?U) e"atE (6XP { " "J M(S) ^ ' M(t)=U ^ 
n=l     ' \     '" 0 

n=l        v11"1^- i=l 

Now use the mean of elv..,eK to estimate the expectation that occurs in the 

above expression: 

(All)   f(t,U)   =   (^)e^*E^»^iEek. 
n=l        v J—*■ 

All the three sets of samples to be made - n*, (u^.-.u^) and (s^...^*) - are 

easy; the first is a discrete distribution and the latter two only require sampling 

from a uniform distribution followed by some sorting. Figure 5 gave a plot of a 

simulated density when a=ß=\=l using the above procedure. In this case 

P(U=0)=0.5, so the volume under the jointly continuous part of the density is 

only 0.5. For this simulation K=10000 and the infinite sum present in (All) was 

truncated at n=100 (the sum converges very rapidly). Calculations on a PC took 

around 4 seconds per density value. 
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